个性化阅读
专注于IT技术分析

R因子用法详解

本文概述

该因子是一种数据结构, 用于仅采用预定义的有限数量的值的字段。这些是采用有限数量的不同值的变量。这些是数据对象, 用于对数据进行分类并将其存储在多个级别上。它既可以存储整数值也可以存储字符串值, 并且在唯一值数量有限的列中很有用。

R因子用法详解

因子具有与存储在其中的唯一整数关联的标签。它包含称为水平的预定义设置值, 默认情况下, R始终按字母顺序对水平排序。

因子的属性

R中有一个因子的以下属性

R因子用法详解
  1. X
    输入向量将被转换为一个因子。
  2. 等级
    它是一个输入向量, 代表由x占用的一组唯一值。
  3. 标签
    它是一个字符向量, 对应于标签数。
  4. 排除
    它用于指定我们要排除的值,
  5. 下令
    这是一个逻辑属性, 它确定是否对级别进行排序。
  6. 最大值
    用于指定最大级别数的上限。

如何创建一个因子?

在R中, 创建因子非常简单。分两个步骤创建因子

  1. 第一步, 我们创建一个向量。
  2. 下一步是将向量转换为因子,

R提供factor()函数以将向量转换为factor。 factor()函数具有以下语法

factor_data<- factor(vector)

让我们看一个示例, 以了解如何使用因子函数。

例子

# Creating a vector as input.
data <- c("Shubham", "Nishka", "Arpita", "Nishka", "Shubham", "Sumit", "Nishka", "Shubham", "Sumit", "Arpita", "Sumit")

print(data)
print(is.factor(data))

# Applying the factor function.
factor_data<- factor(data)

print(factor_data)
print(is.factor(factor_data))

输出

[1] "Shubham" "Nishka"  "Arpita"  "Nishka"  "Shubham" "Sumit"   "Nishka"
 [8] "Shubham" "Sumit"   "Arpita"  "Sumit"
[1] FALSE
 [1] Shubham Nishka Arpita Nishka Shubham Sumit Nishka Shubham Sumit
[10] Arpita Sumit
Levels: Arpita Nishka Shubham Sumit
[1] TRUE

访问因子的组成部分

像向量一样, 我们可以访问因子的组成部分。访问因子分量的过程与向量更相似。我们可以借助索引方法或使用逻辑向量来访问元素。让我们看一个示例, 在该示例中我们了解访问组件的不同方式。

例子

# Creating a vector as input.
data <- c("Shubham", "Nishka", "Arpita", "Nishka", "Shubham", "Sumit", "Nishka", "Shubham", "Sumit", "Arpita", "Sumit")

# Applying the factor function.
factor_data<- factor(data)

#Printing all elements of factor
print(factor_data)

#Accessing 4th element of factor
print(factor_data[4])

#Accessing 5th and 7th element
print(factor_data[c(5, 7)])

#Accessing all elemcent except 4th one
print(factor_data[-4])

#Accessing elements using logical vector
print(factor_data[c(TRUE, FALSE, FALSE, FALSE, TRUE, TRUE, TRUE, FALSE, FALSE, FALSE, TRUE)])

输出

[1] Shubham Nishka Arpita Nishka Shubham Sumit Nishka Shubham Sumit
[10] Arpita Sumit
Levels: Arpita Nishka Shubham Sumit

[1] Nishka
Levels: Arpita Nishka Shubham Sumit
 
[1] Shubham Nishka
Levels: Arpita Nishka Shubham Sumit

 [1] Shubham Nishka Arpita Shubham Sumit Nishka Shubham Sumit Arpita
[10] Sumit
Levels: Arpita Nishka Shubham Sumit

[1] Shubham Shubham Sumit Nishka Sumit
Levels: Arpita Nishka Shubham Sumit

因子修改

像数据框一样, R允许我们修改因子。我们可以通过简单地重新分配因子来修改它的值。在R中, 我们不能选择超出其预定义级别的值, 这意味着如果其级别不存在, 则无法插入值。为此, 我们必须创建一个该值的级别, 然后将其添加到我们的因子中。

让我们看一个示例, 以了解如何在因子中进行修改。

例子

# Creating a vector as input.
data <- c("Shubham", "Nishka", "Arpita", "Nishka", "Shubham")

# Applying the factor function.
factor_data<- factor(data)

#Printing all elements of factor
print(factor_data)

#Change 4th element of factor with sumit
factor_data[4] <-"Arpita"
print(factor_data)

#change 4th element of factor with "Gunjan"
factor_data[4] <- "Gunjan"    # cannot assign values outside levels
print(factor_data)

#Adding the value to the level
levels(factor_data) <- c(levels(factor_data), "Gunjan")#Adding new level
factor_data[4] <- "Gunjan"
print(factor_data)

输出

[1] Shubham Nishka Arpita Nishka Shubham
Levels: Arpita Nishka Shubham
[1] Shubham Nishka Arpita Arpita Shubham
Levels: Arpita Nishka Shubham
Warning message:
In `[<-.factor`(`*tmp*`, 4, value = "Gunjan") :
  invalid factor level, NA generated
[1] Shubham Nishka Arpita 
           
             Shubham
Levels: Arpita Nishka Shubham
[1] Shubham Nishka Arpita Gunjan Shubham
Levels: Arpita Nishka Shubham Gunjan

数据框架中的因子

当我们创建带有一列文本数据的框架时, R将此文本列视为分类数据并在其上创建因子。

例子

# Creating the vectors for data frame.
height <- c(132, 162, 152, 166, 139, 147, 122)
weight <- c(40, 49, 48, 40, 67, 52, 53)
gender <- c("male", "male", "female", "female", "male", "female", "male")

# Creating the data frame.
input_data<- data.frame(height, weight, gender)
print(input_data)

# Testing if the gender column is a factor.
print(is.factor(input_data$gender))

# Printing the gender column to see the levels.
print(input_data$gender)

输出

height weight gender
1    132     40   male
2    162     49   male
3    152     48 female
4    166     40 female
5    139     67   male
6    147     52 female
7    122     53   male
[1] TRUE
[1] male   male   female female male   female male
Levels: female male

更改级别顺序

在R中, 我们可以借助因子函数来更改因子中级别的顺序。

例子

data <- c("Nishka", "Gunjan", "Shubham", "Arpita", "Arpita", "Sumit", "Gunjan", "Shubham")
# Creating the factors
factor_data<- factor(data)
print(factor_data)

# Apply the factor function with the required order of the level.
new_order_factor<- factor(factor_data, levels = c("Gunjan", "Nishka", "Arpita", "Shubham", "Sumit"))
print(new_order_factor)

输出

[1] Nishka Gunjan Shubham Arpita Arpita Sumit Gunjan Shubham
Levels: Arpita Gunjan Nishka Shubham Sumit
[1] Nishka Gunjan Shubham Arpita Arpita Sumit Gunjan Shubham
Levels: Gunjan Nishka Arpita Shubham Sumit

产生因子水平

R提供gl()函数来生成因子水平。此函数采用三个参数, 即n, k和标签。在这里, n和k是整数, 表示我们想要多少个水平以及每个水平需要多少次。

gl()函数的语法如下:

gl(n, k, labels)
  1. n表示级别数。
  2. k表示复制数量。
  3. 标签是结果因子水平的标签向量。

例子

gen_factor<- gl(3, 5, labels=c("BCA", "MCA", "B.Tech"))
gen_factor

输出

[1] BCA BCA BCA BCA BCA MCA MCA MCA MCA MCA
[11] B.Tech B.Tech B.Tech B.Tech B.Tech
Levels: BCA MCA B.Tech

赞(0) 打赏
未经允许不得转载:srcmini » R因子用法详解
分享到: 更多 (0)

评论 抢沙发

评论前必须登录!

 

觉得文章有用就打赏一下文章作者

微信扫一扫打赏